Государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа пос. Просвет муниципального района Волжский Самарской области

443526, Самарская область, Волжский район, п. Просвет, ул. Самарская, д.4

Официальный сайт учреждения: http://prosvetschool.minobr63.ru/, адрес электронной почты: prosvet_sch_vlg@samara.edu.ru
Контактная информация: телефоны: 9982-345, 9982-339

РАССМОТРЕНО

на заседании ШМО

Протокол № 1 от 26 .08.2020 г.

Руководитель ШМО фолм / О.А.Фоменко /

УТВЕРЖДЕНО

Приказ № 296-су от 31.08.2020 г.

Директор ГБОУ СОШ пос. Просвет

/Т.А. Иноземцева /

РАБОЧАЯ ПРОГРАММА

по физике (углублённый уровень) для 10-11 классов ФГОС СОО

Составитель: Лачина Т.И. учитель физики

пос. Просвет 2020 Аннотация к рабочей программе по учебному предмету «Физика» для 10-11 классов (углублённый уровень)

Документы, на основе которых составлена рабочая программа

- 1.Приказ Минобрнауки России от 17 05 2012 г. № 413 (ред. От 29.06.2017) «Об утверждении Федерального государственного образовательного стандарта среднего общего образования».
- 2. Примерная Основная образовательная программа среднего общего образования. Одобрена решением Федерального учебнометодического объединения по общему образованию (протокол от 28. 06.2016 г. № 2/16-3).
- 3. Основная образовательная программа среднего общего образования ГБОУ СОШ пос. Просвет м.р. Волжский Самарской области. Утверждена директором ГБОУ СОШ пос. Просвет (приказ №192/1-од от 27.08.2019).
- 4.Программы для образовательных учреждений Физика. Астрономия. 7-11 классы. Москва. Дрофа. 2017г. Физика для школ с углубленным изучением предмета 10-11классы. Автор программы Г.Я.Мякишев.
- 5. Положение о формах, периодичности и порядке текущего контроля успеваемости и промежуточной аттестации обучающихся государственного бюджетного

Аннотация

Рабочая программа по предмету «Физика» для углубленного уровня преподавания в 10-11 классах составлена в соответствии с требованиями ФГОС СОО к структуре и результатам освоения основных образовательных программ среднего общего образования и освоения предмета на высоком уровне для серьёзного изучения физики в вузе и обретения практических умений и навыков физического необходимых характера, успешной ДЛЯ профессиональной деятельности, обеспечения возможности успешного продолжения образования ПО специальностям, связанным с прикладным использованием физики, а также по специальностям, связанным с осуществлением исследовательской деятельности в области физики и смежных наук.

Для реализации образовательной программы выбран УМК:

- 1. Г.Я.Мякишев Б.Б.Буховцев Н.Н.Сотский Физика 10 класс Учебник для общеобразовательных организаций. Базовый и углубленный уровень под редакцией Н.А.Парфентьевой. Москва «Просвещение» 2019г.
- 2. Г.Я.Мякишев Б.Б.Буховцев Н.Н.Сотский Физика 11 класс Учебник для общеобразовательных организаций. Базовый и углубленный уровень под редакцией Н.А.Парфентьевой. Москва «Просвещение» 2019г.
- 3. А.П.Рымкевич Физика Задачник 10-11 классы Москва Дрофа 2014-2019г.г.

- общеобразовательного учреждения Самарской области средней общеобразовательной школы пос. Просвет муниципального района Волжский Самарской области
- 6. Положение о рабочей программе по учебному предмету, курсу, модулю И тематическому (поурочному) планированию в бюджетном государственном общеобразовательном учреждении Самарской области средней общеобразовательной школе Просвет муниципального района пос. Волжский Самарской области
- 4. Физика 10 класс Лабораторные работы Саратов Лицей 2019г.80с.
- 5. Физика 11 класс Лабораторные работы Саратов Лицей 2019г.80с.
- 6. Дидактические материалы Физика А.Е.Марон Е.А.Марон Дрофа Москва

.

Место предмета в учебном плане ГБОУ СОШ пос. Просвет

Согласно учебному плану <u>ГБОУ СОШ пос. Просвет</u> на изучение физики в 10 и 11 классе отводится 5 ч в неделю, всего 68 недель, 340 ч.

Уровень обучения – углублённый.

	Физика
10 класс	170
11 класс	170
Всего	340

Цели реализации программы углублённого курса изучения физики в условиях реализации ФГОС СОО:

- становление и развитие личности обучающегося в ее самобытности и уникальности, осознание собственной индивидуальности, появление жизненных планов, готовность к самоопределению;
- достижение выпускниками планируемых результатов: компетенций и компетентностей, определяемых личностными, семейными, общественными, государственными потребностями и возможностями обучающегося старшего школьного возраста, индивидуальной образовательной траекторией его развития и состоянием здоровья.

Достижение поставленных целей при разработке и реализации образовательной организацией программы углублённого курса изучения физики предусматривает решение следующих **основных задач:**

- формирование российской гражданской идентичности обучающихся;
- сохранение и развитие культурного разнообразия и языкового наследия многонационального народа Российской Федерации, реализация права на изучение родного языка, овладение духовными ценностями и культурой многонационального народа России;
- обеспечение равных возможностей получения качественного среднего общего образования;

- обеспечение достижения обучающимися образовательных результатов в соответствии с требованиями, установленными Федеральным государственным образовательным стандартом среднего общего образования (далее – ФГОС СОО);
- обеспечение реализации бесплатного образования на уровне среднего общего образования в объеме основной образовательной программы, предусматривающей изучение обязательных учебных предметов, входящих в учебный план (учебных предметов по выбору из обязательных предметных областей, дополнительных учебных предметов, курсов по выбору и общих для включения во все учебные планы учебных предметов, в том числе на углубленном уровне), а также внеурочную деятельность;
- установление требований к воспитанию и социализации обучающихся, их самоидентификации посредством личностно и общественно значимой деятельности, социального и гражданского становления, осознанного выбора профессии, понимание значения профессиональной деятельности для человека и общества, в том числе через реализацию образовательных программ, входящих в основную образовательную программу;
- обеспечение преемственности основных образовательных программ начального общего, основного общего, среднего общего, профессионального образования;
 - развитие государственно-общественного управления в образовании;
- формирование основ оценки результатов освоения обучающимися основной образовательной программы, деятельности педагогических работников, организаций, осуществляющих образовательную деятельность;
- создание условий для развития и самореализации обучающихся, для формирования здорового, безопасного и экологически целесообразного образа жизни обучающихся.

І. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА ФИЗИКА В 10-11 КЛАССАХ (НА УГЛУБЛЁННОМ УРОВНЕ)

Личностные и метапредметные результаты представлены в разделе 1.2 ООП СОО ГБОУ СОШ пос. Просвет

Предметные результаты Углублённый уровень «Системно-теоретические результаты»					
				I. Выпускник научится	II. Выпускник получит возможность научиться
				Для успешного продолжения образования	Для обеспечения возможности успешного продолжения
	образования по специальностям, связанным с				
по специальностям, связанным с прикладным использованием	осуществлением научной и исследовательской				
физики	деятельности в области физики и смежных наук				
объяснять и анализировать роль и место физики в	проверять экспериментальными средствами				
формировании современной научной картины мира, в	выдвинутые гипотезы, формулируя цель исследования, на				
развитии современной техники и технологий, в практической	основе знания основополагающих физических				
деятельности людей;	закономерностей и законов;				
характеризовать взаимосвязь между физикой и другими	описывать и анализировать полученную в результате				
естественными науками;	проведенных физических экспериментов информацию,				
характеризовать системную связь между	определять ее достоверность;				
основополагающими научными понятиями: пространство,	понимать и объяснять системную связь между				
время, материя (вещество, поле), движение, сила, энергия;	основополагающими научными понятиями:				
понимать и объяснять целостность физической теории,	пространство, время, материя (вещество, поле),				

различать границы ее применимости и место в ряду других физических теорий;

владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;

самостоятельно конструировать экспериментальные установки для проверки выдвинутых гипотез, рассчитывать абсолютную и относительную погрешности;

самостоятельно планировать и проводить физические эксперименты;

решать практико-ориентированные качественные и расчетные физические задачи с опорой как на известные физические законы, закономерности и модели, так и на тексты с избыточной информацией;

объяснять границы применения изученных физических моделей при решении физических и межпредметных задач; выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;

характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, и

движение, сила, энергия;

решать экспериментальные, качественные и количественные задачи олимпиадного уровня сложности, используя физические законы, а также уравнения, связывающие физические величины;

анализировать границы применимости физических законов, понимать всеобщий характер фундаментальных законов и ограниченность использования частных законов;

формулировать и решать новые задачи, возникающие в ходе учебно-исследовательской и проектной деятельности;

усовершенствовать приборы и методы исследования в соответствии с поставленной задачей;

использовать методы математического моделирования, в том числе простейшие статистические методы для обработки результатов эксперимента.

роль физики в решении этих проблем; объяснять принципы работы и характеристики изученных машин, приборов и технических устройств; объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

II. Содержание курса физики

Программа учебного предмета «Физика» направлена на формирование у обучающихся функциональной грамотности и метапредметных умений через выполнение исследовательской и практической деятельности.

В системе естественно-научного образования физика как учебный предмет занимает важное место в формировании научного мировоззрения и ознакомления обучающихся с методами научного познания окружающего мира, а также с физическими основами современного производства и бытового технического окружения человека; в формировании собственной позиции по отношению к физической информации, полученной из разных источников.

Успешность изучения предмета связана с овладением основами учебно-исследовательской деятельности, применением полученных знаний при решении практических и теоретических задач.

В соответствии с ФГОС СОО образования физика изучается на углубленном уровне.

Изучение физики на углубленном уровне включает расширение предметных результатов и содержание, ориентированное на подготовку к последующему профессиональному образованию.

Изучение предмета на углубленном уровне позволяет сформировать у обучающихся физическое мышление, умение систематизировать и обобщать полученные знания, самостоятельно применять полученные знания для решения практических и учебно-исследовательских задач; умение анализировать, прогнозировать и оценивать с позиции экологической безопасности последствия бытовой и производственной деятельности человека, связанной с использованием источников энергии.

В основу изучения предмета «Физика» на базовом и углубленном уровнях в части формирования у обучающихся научного мировоззрения, освоения общенаучных методов познания, а также практического применения научных знаний заложены межпредметные связи в области естественных, математических и гуманитарных наук.

Программа содержит перечень практических и лабораторных работ для достижения предметных результатов.

В соответствии с принятой Концепцией развития физического образования в Российской Федерации, физическое образование решает, в частности, следующие ключевые задачи:

- «предоставлять каждому обучающемуся возможность достижения уровня физических знаний, необходимого для дальнейшей успешной жизни в обществе»;
- «обеспечивать необходимое стране число выпускников, физическая подготовка которых достаточна для продолжения образования в различных направлениях и для практической деятельности, включая преподавание физики, физические исследования, работу в сфере информационных технологий и др.»;
- «в основном общем и среднем общем образовании необходимо предусмотреть подготовку обучающихся в соответствии с их запросами к уровню подготовки в сфере физического образования». Соответственно, выделяются три направления требований к результатам физического образования:
 - 1) практико-ориентированное физическое образование (физика для жизни);
 - 2) физика для использования в профессии;
 - 3) творческое направление, на которое нацелены те обучающиеся, которые планируют заниматься творческой и исследовательской работой в области физики, математики, экономики и других областях.
- Выпускник **научится** в 10–11-м классах: для успешного продолжения образования по специальностям, связанным с прикладным использованием физики.
- Выпускник **получит возможность научиться** в 10–11-м классах: для обеспечения возможности успешного продолжения образования по специальностям, связанным с осуществлением научной и исследовательской деятельности в области физики и смежных наук.

Углублённый уровень Физика

Физика и естественно-научный метод познания природы

Физика – фундаментальная наука о природе. Научный метод познания мира. Взаимосвязь между физикой и другими естественными науками. Методы научного исследования физических явлений. Погрешности измерений физических величин. Моделирование явлений и процессов

природы. Закономерность и случайность. Границы применимости физического закона. Физические теории и принцип соответствия. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей. Физика и культура.

Механика

Предмет и задачи классической механики. Кинематические характеристики механического движения. Модели тел и движений. Равноускоренное прямолинейное движение, свободное падение. движение тела, брошенного под углом к горизонту. Движение точки по окружности. Поступательное и вращательное движение твердого тела.

Взаимодействие тел. Принцип суперпозиции сил. Инерциальная система отсчета. Законы механики Ньютона. Законы Всемирного тяготения, Гука, сухого трения. Движение небесных тел и их искусственных спутников. Явления, наблюдаемые в неинерциальных системах отсчета.

Импульс силы. Закон изменения и сохранения импульса. Работа силы. Закон изменения и сохранения энергии.

Равновесие материальной точки и твердого тела. Условия равновесия твердого тела в инерциальной системе отсчета. Момент силы. Равновесие жидкости и газа. Движение жидкостей и газов. Закон сохранения энергии в динамике жидкости и газа.

Механические колебания и волны. Амплитуда, период, частота, фаза колебаний. Превращения энергии при колебаниях. *Вынужденные колебания*, *резонанс*.

Поперечные и продольные волны. Энергия волны. Интерференция и дифракция волн. Звуковые волны.

Молекулярная физика и термодинамика

Предмет и задачи молекулярно-кинетической теории (МКТ) и термодинамики.

Экспериментальные доказательства МКТ. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. Модель идеального газа. Давление газа. Связь между давлением и средней кинетической энергией поступательного теплового движения молекул идеального газа.

Модель идеального газа в термодинамике: уравнение Менделеева– Клапейрона, выражение для внутренней энергии. Закон Дальтона. Газовые законы.

Агрегатные состояния вещества. Фазовые переходы. Преобразование энергии в фазовых переходах. Насыщенные и ненасыщенные пары. Влажность воздуха. Модель строения жидкостей. Поверхностное натижение. Модель строения твердых тел. Механические свойства твердых тел.

Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Первый закон термодинамики. Адиабатный процесс. Второй закон термодинамики.

Преобразования энергии в тепловых машинах. КПД тепловой машины. Цикл Карно. Экологические проблемы теплоэнергетики.

Электродинамика

Предмет и задачи электродинамики. Электрическое взаимодействие. Закон сохранения электрического заряда. Закон Кулона. Напряженность и потенциал электростатического поля. Принцип суперпозиции электрических полей. Разность потенциалов. Проводники и диэлектрики в электростатическом поле. Электрическая емкость. Конденсатор. Энергия электрического поля.

Постоянный электрический ток. Электродвижущая сила (ЭДС). Закон Ома для полной электрической цепи. Электрический ток в металлах, электролитах, полупроводниках, газах и вакууме. Плазма. Электролиз. Полупроводниковые приборы. Сверхпроводимость.

Магнитное поле. Вектор магнитной индукции. Принцип суперпозиции магнитных полей. Магнитное поле проводника с током. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера и сила Лоренца.

Поток вектора магнитной индукции. Явление электромагнитной индукции. Закон электромагнитной индукции. ЭДС индукции в движущихся проводниках. Правило Ленца. Явление самоиндукции. Индуктивность. Энергия электромагнитного поля. Магнитные свойства вещества.

Электромагнитные колебания. Колебательный контур. Свободные электромагнитные колебания. Вынужденные электромагнитные колебания. Резонанс. Переменный ток. Конденсатор и катушка в цепи переменного тока. Производство, передача и потребление электрической энергии. Элементарная теория трансформатора.

Электромагнитное поле. Вихревое электрическое поле. Электромагнитные волны. Свойства электромагнитных волн. Диапазоны электромагнитных излучений и их практическое применение. Принципы радиосвязи и телевидения.

Геометрическая оптика. Прямолинейное распространение света в однородной среде. Законы отражения и преломления света. Полное внутреннее отражение. Оптические приборы.

Волновые свойства света. Скорость света. Интерференция света. Когерентность. Дифракция света. Поляризация света. Дисперсия света. Практическое применение электромагнитных излучений.

Основы специальной теории относительности

Инвариантность модуля скорости света в вакууме. Принцип относительности Эйнштейна. *Пространство и время в специальной теории относительности*. *Энергия и импульс свободной частицы*. Связь массы и энергии свободной частицы. Энергия покоя.

Квантовая физика. Физика атома и атомного ядра

Предмет и задачи квантовой физики.

Тепловое излучение. Распределение энергии в спектре абсолютно черного тела.

Гипотеза М. Планка о квантах. Фотоэффект. Опыты А.Г. Столетова, законы фотоэффекта. Уравнение А. Эйнштейна для фотоэффекта.

Фотон. Опыты П.Н. Лебедева и С.И. Вавилова. Гипотеза Л. де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм. Дифракция электронов. Давление света. Соотношение неопределенностей Гейзенберга.

Модели строения атома. Объяснение линейчатого спектра водорода на основе квантовых постулатов Н. Бора. Спонтанное и вынужденное излучение света.

Состав и строение атомного ядра. Изотопы. Ядерные силы. Дефект массы и энергия связи ядра.

Закон радиоактивного распада. Ядерные реакции, реакции деления и синтеза. Цепная реакция деления ядер. Ядерная энергетика. Термоядерный синтез.

Элементарные частицы. Фундаментальные взаимодействия. Ускорители элементарных частиц.

Строение Вселенной

Применимость законов физики для объяснения природы космических объектов. Солнечная система. Звезды и источники их энергии. Классификация звезд. Эволюция Солнца и звезд.

Галактика. Другие галактики. Пространственно-временные масштабы наблюдаемой Вселенной. Представление об эволюции Вселенной. *Темная материя и темная энергия*.

Перечень практических и лабораторных работ

Прямые измерения:

измерение мгновенной скорости с использованием секундомера или компьютера с датчиками;

сравнение масс (по взаимодействию);

измерение сил в механике;

измерение температуры жидкостными и цифровыми термометрами;

оценка сил взаимодействия молекул (методом отрыва капель);

измерение термодинамических параметров газа;

измерение ЭДС источника тока;

измерение силы взаимодействия катушки с током и магнита помощью электронных весов;

определение периода обращения двойных звезд (печатные материалы).

Косвенные измерения:

измерение ускорения;

измерение ускорения свободного падения;

определение энергии и импульса по тормозному пути;

измерение удельной теплоты плавления льда;

измерение напряженности вихревого электрического поля (при наблюдении электромагнитной индукции);

измерение внутреннего сопротивления источника тока;

определение показателя преломления среды;

измерение фокусного расстояния собирающей и рассеивающей линз;

определение длины световой волны;

определение импульса и энергии частицы при движении в магнитном поле (по фотографиям).

Наблюдение явлений:

наблюдение механических явлений в инерциальных и неинерциальных системах отсчета;

наблюдение вынужденных колебаний и резонанса;

наблюдение диффузии;

наблюдение явления электромагнитной индукции;

наблюдение волновых свойств света: дифракция, интерференция, поляризация;

наблюдение спектров;

вечерние наблюдения звезд, Луны и планет в телескоп или бинокль.

Исследования:

исследование равноускоренного движения с использованием электронного секундомера или компьютера с датчиками;

исследование движения тела, брошенного горизонтально;

исследование центрального удара;

исследование качения цилиндра по наклонной плоскости;

исследование движения броуновской частицы (по трекам Перрена);

исследование изопроцессов;

исследование изохорного процесса и оценка абсолютного нуля;

исследование остывания воды;

исследование зависимости напряжения на полюсах источника тока от силы тока в цепи;

исследование зависимости силы тока через лампочку от напряжения на ней;

исследование нагревания воды нагревателем небольшой мощности;

исследование явления электромагнитной индукции;

исследование зависимости угла преломления от угла падения;

исследование зависимости расстояния от линзы до изображения от расстояния от линзы до предмета;

исследование спектра водорода;

исследование движения двойных звезд (по печатным материалам).

Проверка гипотез (в том числе имеются неверные):

при движении бруска по наклонной плоскости время перемещения на определенное расстояния тем больше, чем больше масса бруска;

при движении бруска по наклонной плоскости скорость прямо пропорциональна пути;

при затухании колебаний амплитуда обратно пропорциональна времени; квадрат среднего перемещения броуновской частицы прямо пропорционален времени наблюдения (по трекам Перрена);

скорость остывания воды линейно зависит от времени остывания;

напряжение при последовательном включении лампочки и резистора не равно сумме напряжений на лампочке и резисторе;

угол преломления прямо пропорционален углу падения; при плотном сложении двух линз оптические силы складываются;

Конструирование технических устройств:

конструирование наклонной плоскости с заданным КПД;

конструирование рычажных весов;

конструирование наклонной плоскости, по которой брусок движется с заданным ускорением;

конструирование электродвигателя;

конструирование трансформатора;

конструирование модели телескопа или микроскопа.

III. Тематическое планирование

Физика

№ темы	Содержание материала	Кол-во часов
	10 класс	
1.	Введение	4
2.	Механика	64
3.	Лабораторный практикум	12
4.	Молекулярная физика. Термодинамика	34

5.	Лабораторный практикум	8		
6.	Электродинамика	37		
7.	Лабораторный практикум	8		
8.	Резервное время	3		
Всего		170		
11 класс				
1.	Электродинамика (продолжение)	31		
2.	Колебания и волны	39		
3.	Оптика	21		
4.	Основы теории относительности	5		
5.	Квантовая физика	33		
6.	Строение Вселенной	8		
7.	Лабораторный практикум	11		
8.	Повторение, обобщение, подготовка к ЕГЭ	17		
9.	Резервное время	5		
Всего		170		
	Итого	340		